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Purpose: To present an overview of current machine learning methods and their use in
medical research, focusing on select machine learning techniques, best practices, and
deep learning.

Methods: A systematic literature search in PubMed was performed for articles perti-
nent to the topic of artificial intelligence methods used in medicine with an emphasis
on ophthalmology.

Results:A reviewofmachine learning anddeep learningmethodology for the audience
without an extensive technical computer programming background.

Conclusions: Artificial intelligence has a promising future in medicine; however, many
challenges remain.

Translational Relevance: The aim of this review article is to provide the nontechnical
readers a layman’s explanationof themachine learningmethodsbeingused inmedicine
today. The goal is to provide the reader a better understanding of the potential and
challenges of artificial intelligence within the field of medicine.

Introduction

Over the past decade, artificial intelligence (AI) has
become a popular subject both within and outside of
the scientific community; an abundance of articles in
technology and non-technology-based journals have
covered the topics of machine learning (ML), deep
learning (DL), and AI.1–6 Yet there still remains confu-
sion around AI, ML, and DL. The terms are highly
associated, but are not interchangeable. In this review,
we (attempt to) forgo technical jargon to better explain
these concepts to a clinical audience.

In 1956, a group of computer scientists proposed
that computers could be programmed to think and
reason, “that every aspect of learning or any other
feature of intelligence [could], in principle, be so
precisely described that a machine [could] be made to

simulate it.”7 They described this principle as “artifi-
cial intelligence.”7 Simply put, AI is a field focused
on automating intellectual tasks normally performed
by humans, and ML and DL are specific methods of
achieving this goal. That is, they are within the realm
of AI (Fig. 1). However, AI includes approaches that
do not involve any form of “learning.” For instance,
the subfield known as symbolic AI focuses on hardcod-
ing (i.e., explicitly writing) rules for every possible
scenario in a particular domain of interest. These rules,
written by humans, come from a priori knowledge
of the particular subject and task to be completed.
For example, if one were to program an algorithm to
modulate room temperature of an office, he or she
likely already know what temperatures are comfortable
for humans to work in and would program the room
to cool if temperatures rise above a specific thresh-
old and heat if they drop below a lower threshold.
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Figure 1. Umbrella of select data science techniques. Artificial
intelligence (AI) falls within the realm of data science, and includes
classical programming and machine learning (ML). ML contains
many models and methods, including deep learning (DL) and artifi-
cial neural networks (ANN).

Although symbolic AI is proficient at solving clearly
defined logical problems, it often fails for tasks
that require higher-level pattern recognition, such as
speech recognition or image classification. These more
complicated tasks are where ML and DL methods
perform well. This review summarizes machine learn-
ing and deep learning methodology for the audience
without an extensive technical computer programming
background.

Methods

We conducted a literature search in PubMed for
articles that were pertinent to leading artificial intel-
ligence methods being utilized in medical research.
Selection of articles was at the sole discretion of the
authors. The goal of our literature search was to
provide the nontechnical readers a layman’s explana-
tion of the machine learning methods being used in
medicine today.

Results

We found 33 articles that were pertinent to the main
AI methods being used in medicine today.

Discussion

Introduction to Machine Learning

ML is a field that focuses on the learning aspect of
AI by developing algorithms that best represent a set of

data. In contrast to classical programming (Fig. 2A),
in which an algorithm can be explicitly coded using
known features,ML uses subsets of data to generate an
algorithm that may use novel or different combinations
of features and weights than can be derived from first
principles (Fig. 2B).8,9 InML, there are four commonly
used learning methods, each useful for solving differ-
ent tasks: supervised, unsupervised, semisupervised,
and reinforcement learning.8–10 To better understand
these methods, they will be defined via an example of
a hypothetical real estate company that specializes in
predicting housing prices and features associated with
those houses.

Supervised Learning
Suppose the real estate company would like to

predict the price of a house based on specific features
of the house. To begin, the company would first gather
a dataset that contains many instances.8,9,11 Each
instance represents a singular observation of a house
and associated features. Features are the recorded
properties of a house thatmight be useful for predicting
prices (e.g., total square-footage, number of floors, the
presence of a yard).8,9,11 The target is the feature to be
predicted, in this case the housing price.8,9,11 Datasets
are generally split into training, validation, and testing
datasets (models will always perform optimally on the
data they are trained on).8,9 Supervised learning uses
patterns in the training dataset to map features to
the target so that an algorithm can make housing
price predictions on future datasets. This approach
is supervised because the model infers an algorithm
from feature-target pairs and is informed, by the
target, whether it has predicted correctly.8–10 That is,
features, x, are mapped to the target, Y, by learning
the mapping function, f, so that future housing prices
may be approximated using the algorithm Y = f(x).
The performance of the algorithm is evaluated on the
test dataset, data that the algorithm has never seen
before.8,9 The basic steps of supervised machine learn-
ing are (1) acquire a dataset and split it into separate
training, validation, and test datasets; (2) use the train-
ing and validation datasets to inform a model of the
relationship between features and target; and (3) evalu-
ate the model via the test dataset to determine how
well it predicts housing prices for unseen instances. In
each iteration, the performance of the algorithm on
the training data is compared with the performance
on the validation dataset. In this way, the algorithm is
tuned by the validation set. Insofar as the validation
set may differ from the test set, the performance of
the algorithm may or may not generalize. This concept
will be discussed further in the section on performance
evaluation.
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Figure 2. Classical programming versus machine learning paradigm. (A) In classical programming, a computer is supplied with a dataset
and an algorithm. The algorithm informs the computer how to operate upon the dataset to create outputs. (B) In machine learning, a
computer is suppliedwith a dataset and associated outputs. The computer learns andgenerates an algorithm that describes the relationship
between the two. This algorithm can be used for inference on future datasets.

The most common supervised learning tasks are
regression and classification.8–10 Regression involves
predicting numeric data, such as test scores, laboratory
values, or prices of an item, much like the housing price
example.8–10 Classification, on the other hand, entails
predicting to which category an example belongs.8–10
Sticking with the previous example, imagine that rather
than predicting exact housing prices in a fluctuat-
ing market, the real estate company would now like
to predict a range of prices for which a house will
likely sell, such as (0, 125K), (125K, 250K), (250K,
375K), and (375K, ∞). To accomplish this, data
scientists would transform the numeric target variable
into a categorical variable by binning housing prices
into separate classes. These classes would be ordinal,
meaning that there is a natural order associated with
the categories.9 However, if their task was to determine
whether houses had wood, plastic, or metal siding,
classes would be nominal; they are independent of one
another and have no natural order.9

Unsupervised Learning
In contrast to supervised learning, unsupervised

learning aims to detect patterns in a dataset and
categorize individual instances in the dataset to
said categories.8–10 These algorithms are unsupervised
because the patterns that may or may not exist in a
dataset are not informed by a target and are left to
be determined by the algorithm. Some of the most
common unsupervised learning tasks are clustering,
association, and anomaly detection.8–10 Clustering, as
the name suggests, groups instances in a dataset into
separate clusters based upon specific combinations of
their features.8–10 Say the real estate company now

uses a clustering algorithm on its dataset and it finds
three distinct clusters. Upon further investigation, it
might find that the clusters represent the three separate
architects responsible for designing the homes in their
dataset, which is a feature that was not present in the
training dataset.

Semisupervised Learning
Semisupervised learning can be thought of as the

“happy medium” between supervised and unsuper-
vised learning and is particularly useful for datasets
that contain both labeled and unlabeled data (i.e., all
features are present, but not all features have associated
targets).10 This situation typically arises when label-
ing images become time-intensive or cost-prohibitive.
Semisupervised learning is often used for medical
images, where a physician might label a small subset of
images and use them to train a model. This model is
then used to classify the rest of the unlabeled images in
the dataset. The resultant labeled dataset is then used
to train a workingmodel that should, in theory, outper-
form unsupervised models.10

Reinforcement Learning
Finally, reinforcement learning is the technique of

training an algorithm for a specific task where no single
answer is correct, but an overall outcome is desired.9,10
It is arguably the closest attempt at modeling the
human learning experience because it also learns from
trial and error rather than data alone.9,10 Although
reinforcement learning is a powerful technique, its
applications in medicine are currently limited and thus
will be presented with a new example. Imagine one
would like to train an algorithm to play the video game
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Super Mario Bros, where the purpose of the game is
to move the character Mario from the left side of the
screen to the right side in order to reach the flag pole
at the end of each level while avoiding hazards such
as enemies and pits. There is no correct sequence of
controller inputs; there are sequences that lead to a
win and those that do not. In reinforcement learning,
an algorithm would be allowed to “play” on its own.
It would attempt many different controller inputs and
when it finally movesMario forward (without receiving
damage), the algorithm is “rewarded” (i.e., the behav-
ior is reinforced). Through this process, the algorithm
begins to learn what behavior is desired (e.g., moving
forward is better than moving backward, jumping over
enemies is better than running into them). Eventually,
the algorithm learns how to move from start to finish.
Although reinforcement has its place in the field of
computer science and machine learning, it has yet to
make a substantial impact in clinical medicine.

Performance Evaluation

To maximize the chance of generalizability to the
performance of the algorithm on unseen data, the
training dataset is usually split into a slightly smaller
training dataset and a separate validation dataset.8,9
Metrics used for evaluation of a model depend upon
the model itself and whether it is in the training
or testing phase. The validation dataset is meant to
mimic the test dataset and helps data scientists tune
an algorithm by identifying when a model may gener-
alize well and work in a new population. Because the
validation dataset is a small sample of the true (larger)
population, it may not accurately represent the popula-
tion itself due to an unknown sampling bias. There-
fore, model performance and generalizability should
not be assessed via validation set performance. It is
conceivable that a data scientist could create a valida-
tion dataset with an unknown bias and use it to tune
a model. Although the model might perform well on
the validation dataset, it would likely not perform well
on the much larger test dataset (i.e., it would not be a
generalizable model)

Typically, model performance ismonitored via some
form of accuracy on the training and validation
datasets during this phase. So long as the accuracy
of the model on the training set (X%) and valida-
tion set (Y%) are increasing and converging after
each training iteration, the model is considered to
be learning. If both converge, but do not increase
(e.g., X converges on Y at 50%), the model is not
learning and may be underfit to the data, that is,
it may not have learned enough of the relationship
between features and targets in a way that it would

be expected to work in another population. Finally, if
training performance increases far more than valida-
tion set performance (e.g., the model has an accuracy
of 99% on the data it was trained on, but only 80%
on the validation data), the model is overfit. That is,
it has learned features specific to the training dataset
population at the expense of generalizability to another
population. Although the validation dataset is not
specifically used to train the algorithm, it is used to
iteratively tune the algorithm. Therefore, the validation
dataset is not necessarily a reliable indicator of model
performance on unseen data.8,9

Upon completion of the training phase, a data
scientist has, ideally, trained a highly generalizable
model; however, this must be confirmed via a separate
test dataset. In the case of supervised learning, which
will be the focus of this review from here on, the perfor-
mance of a learnedmodel can be evaluated in a number
of ways, but is most commonly evaluated based on
prediction accuracy (classification) or error and resid-
uals (regression).8,9 As previously mentioned, the test
dataset contains instances of the original dataset that
have not been seen by the algorithm during the train-
ing phase. If the predictive power of a model is strong
on the training dataset, but poor on the test dataset,
then the model is too specific to the patterns from the
training data and is considered to be overfit to the train-
ing dataset.8,9 That is, it has memorized patterns rather
than learned a generalizable model. An underfit model,
on the other hand, is one that performs poorly on both
training and test datasets and has neither learned nor
memorized the training dataset and still is not gener-
alizable.8,9 An ideally fitted model is one that performs
strongly on both datasets, suggesting it is generalizable
(i.e., it will perform well on other similar datasets).8,9

With regression models, the average mean squared
error (MSE) can be an indicator of model perfor-
mance.8,9 MSE measures how close a predicted
value is to the intended target value. MSE is calcu-
lated by summing the differences between predicted
values and target values, squaring the results,
and dividing by the total number of instances
(MSE = 1

n
∑n

i=1 (yi − ŷi)2).8,9 There are many other
measures of performance for regression models that
are out of the scope of this review.

For binary classification, the output of the model
is a class. However, before the class designation, the
probability of an instance belonging to class A or class
B is determined.8,9 Normally, this probability thresh-
old is set at 0.5. A receiver operating characteristic
curve evaluates a model’s true positive rate (TPR; i.e.,
sensitivity, recall), the number of samples correctly
identified as positive divided by the total number of
positive samples, versus its false-positive rate (FPR;
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Figure 3. Sensitivity, specificity, positive predictive value, and negative predictive value. A population (dataset) is represented as circles
colored blue if positive or orange if negative. The dataset is input to an algorithm that predicts each instance’s class association. If an instance
is correctly predicted as positive or negative, it is a true positive (TP) or true negative (TN), respectively. If an instance is incorrectly labeled
positive or negative, it is a false positive (FP) or false negative (FN), respectively. (A) Amodelwith perfect sensitivity (

∑ TP
TP + FN ) and specificity

(
∑ TN

TN + FP ). (B) Amodelwithperfect sensitivity (ability to correctly classify all positive cases), butpoor specificity (ability to correctly classify all
negative cases) and (C) amodel with perfect specificity, but poor sensitivity. Although amodel might have perfect sensitivity (B), it can have
many false positives. Similarly, a model with perfect specificity (C) might have many false negatives. Therefore, it is also useful to evaluate
the positive predictive value (PPV;

∑ TP
TP + FP ) and the negative predictive value (NPV;

∑ TN
TN + FN ). PPV and NPV are also thus dependent on

the prevalence of disease in a population.

Figure 4. Example receiver operating characteristics and precision-recall curves. Red line: a model that performs no better than chance has
an area under the curve (AUC) of the receiver operating characteristics curve (AUROC) of 0.50 or area under the precision-recall curve (AUPR)
at the class ratio (red shaded area). Blue line: a model that performs better than chance, but not perfectly, will have an AUC between 0.50 and
1.00 (blue+ red shaded areas). Green line: a model that performs perfectly has an AUC of 1.00 (red+ blue+ green shaded areas).

i.e., 1 - specificity), the number of samples incor-
rectly identified as positive divided by the total number
of negative samples (Fig. 3, Fig. 4A).8,9 Similarly,
the precision-recall curve evaluates a model’s positive
predictive value (PPV; i.e., precision), the number of
samples correctly identified as positive divided by the
total number of samples identified as positive, versus

its recall (Fig. 3, Fig. 4B).8,9 Each curve is evaluated
across the range of model probability thresholds from
1 to 0, left to right. A receiver operating characteristic
curve starts at the point (FPR = 0, TPR = 0), which
corresponds to a decision threshold of 1 (every sample
is classified as negative, and thus there are no false or
true positives). It ends at the point (FPR= 1, TPR= 1),
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which corresponds to a decision threshold of 0 (where
every sample is classified as positive, and thus all points
are either truly or falsely labeled positive). The points
in between, which create the curve, are obtained by
calculating the TPR and FPR for different decision
thresholds between 1 and 0, trading off sensitivity
(minimizing false negatives) with specificity (minimiz-
ing false positives). The area under the curve (AUC) of
the receiver operating characteristics curve (AUROC)
can be calculated and used as a metric for evaluat-
ing the overall performance of a classifier, assuming
the classes of the dataset are balanced. If classes are
not balanced, the area under the precision-recall curve
(AUPR) may be a better metric of model performance
because the threshold (set at 0.5 in Fig. 4B) may be
adjusted. For example, if a dataset comprised 75% of
class A and 25% of class B, the ratio between the
two would be computed as the threshold (0.75). In
practice, an AUROC value of 0.50 indicates a model
that performs no better than chance, and an AUC of
1.00 indicates that the model performs perfectly; the
higher the value of the AUC, the stronger the perfor-
mance of the ML model.8,9 Similarly, an AUPR value
at the preset threshold indicates a model that performs
no better than chance, and an AUPR value of 1.00
indicates a perfect model.8,9

Classic Machine Learning Methods

There aremanymachine learning algorithms used in
medicine. Described next are some of the most popular
to date.

Linear Regression
Linear regression is arguably the simplest ML

algorithm. The main idea behind regression analy-
sis is to specify a relationship between one or more
numeric features and a single numeric target.8,9 Linear
regression is an analysis technique used to solve a
regression problem by using a straight line to describe
a dataset. Univariate linear regression, a regression
problem where only a single feature is used for predict-
ing a target value, can be represented in a slope-
intercept form: y = ax + b.8,9 Here, a is a weight
describing the slope, which describes how much a line
increases on the y-axis for each increase in x. The inter-
cept, b, describes the point where the line intercepts the
y-axis. Linear regression models a dataset using this
slope-intercept form, where the machine’s task is to
identify values of a and b such that the determined line
is best able to relate the supplied values of x values to
the values of y.Multivariate linear regression is similar;
however, there are multiple weights in the algorithm,

each describing to what degree each feature influences
the target.8,9

In practice, there is rarely a single function that fits
a dataset perfectly. To measure the error associated
with a fit, the residuals are measured. Conceptually,
residuals are the vertical distances between predicted
values, ŷ, and actual values, y. In machine learn-
ing, the cost function is a calculus derived term that
aims to minimize errors associated with a model.8,9
The process of minimizing the cost function involves
an iterative optimization algorithm known as gradi-
ent descent, of which the mathematical calculations
involved are outside the scope of this article.8,9,12 In
linear regression, the cost function is the previously
describedMSE.Minimizing this function often obtains
estimates of a and b that best model a dataset. All
model-based learning algorithms have a cost function,
and the goal is to minimize this function to find the
best-fit model.8,9

Logistic Regression
Logistic regression is a classification algorithm

where the goal is to find a relationship between features
and the probability of a particular outcome. Rather
than using the straight line produced by linear regres-
sion to estimate class probability, logistic regression
uses a sigmoidal curve to estimate class probability
(Fig. 5). This curve is determined by the sigmoid
function, y = 1

1 + e−x , which produces an S-shaped
curve that converts discrete or continuous numeric
features (x) into a single numerical value (y) between
0 and 1.8,9 The major advantage of this method is that
probabilities are bounded between 0 and 1 (i.e., proba-
bilities cannot be negative or greater than 1). It can
be either binomial, where there are only two possible
outcomes, or multinomial, where there can be three or
more possible outcomes.8,9

Decision Trees and Random Forests
A decision tree is a supervised learning technique,

primarily used for classification tasks, but can also be
used for regression.8,9 A decision tree beginswith a root
node, the first decision point for splitting the dataset,
and contains a single feature that best splits the data
into their respective classes (Fig. 6).8,9 Each split has
an edge that connects either to a new decision node
that contains another feature to further split the data
into homogenous groups or to a terminal node that
predicts the class. This process of separating data into
two binary partitions is known as recursive partition-
ing.8,9 A random forest is an extension of this method,
known as an ensemble method, that produces multi-
ple decision trees.8,9 Rather than using every feature
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Figure 5. Example class probability prediction using linear and
logistic regression. Presented are linear (blue line) and logistic (red
line) regression models for predicting the probability of various
samples (gray circles) as belonging to a particular class using a
single variable, variable X, which ranges from -10 to 10. With logis-
tic regression, variable X is transformed into class probabilities that
are bounded between 0 and 1 using the sigmoid function. Simple
linear regression attempts to estimate class probabilities, but is not
bounded between 0 and 1; thus, it breaks a fundamental law of
probability that does not allow for negative probabilities or those
greater than 1.

to create every decision tree in a random forest, a
subsample of features are used to create each decision
tree. Trees then predict a class outcome, and the major-
ity vote among trees is used as the model’s final class
prediction.8,9

Classic Machine Learning in Ophthalmology
Although DL has become a highly popular

technique in ophthalmology, there are a multitude
of examples of classic ML algorithms being used
in the field. Simple linear models have been used to
predict patients who would develop advanced age-
related macular degeneration and to discern which
factors separate patients into who will respond to anti-
vascular endothelial growth factor treatment versus
those who will not.13–16 Random forest algorithms
have been used to discover features that are most
predictive of progression to geographic atrophy in
age-related macular degeneration and find prognostic
features for visual acuity outcomes of intravitreal
anti-vascular endothelial growth factor treatment.17,18
Random forest classifiers have also been applied to
diagnose and grade cataracts from ultrasound images,
as well as identify patients with glaucoma based on
retinal nerve fiber layer and visual field data.19,20

Neural Networks and Deep Learning

An artificial neural network (ANN) is a machine
learning algorithm inspired by biological neural
networks.8,9,21 Each ANN contains nodes (analogous
to cell bodies) that communicate with other nodes via
connections (analogous to axons and dendrites). Much
in the way synapses between neurons are strengthened
when their neurons have correlated outputs in a biolog-
ical neural network (theHebbian theory postulates that
“nerves that fire together, wire together”), connections
between nodes in an ANN are weighted based upon
their ability to provide a desired outcome.8,9,21

Feedforward Neural Networks
A perceptron is a machine learning algorithm that

takes in a series of features and their targets as input
and attempts to find a line, plane, or hyperplane
that separates the classes in a two-, three-, or hyper-
dimensional space, respectively.9,22,23 These features
are transformed using the sigmoid function (Fig. 7A).
Thus, this method is similar to logistic regression;
however, it only provides class associations, and not the
probability of an instance belonging to a class.

When multiple perceptrons are connected, the
model is referred to as a multilayer perceptron
algorithm or an ANN. Commonly, ANNs contain a
layer of input nodes, a layer of output nodes, and
a number of “hidden layers” between the two.9 In
simple ANNs, there exists an input layer between zero
and three hidden layers and an output layer, whereas
deep neural networks contain tens or even hundreds of
hidden layers.9,24 For most tasks, ANNs feed informa-
tion forward. This is known as a feedforward neural
network, meaning information from each node in the
previous layer is passed to each node in the next layer,
transformed, and passed forward to each node in the
next layer (Fig. 7B).9 In recurrent neural networks,
which are out of the scope of this paper, information
can be passed between nodes within a layer or to previ-
ous layers, where their output is operated on and fed
forward once again.22

Each layer in an ANN can contain any number of
nodes; however, the number of nodes in the output
layer typically corresponds to the number of classes
being predicted if the goal is multiclass classifica-
tion, a single node with a sigmoidal activation for
binary classification, or a linear activation function if
the goal is regression.9,24 These activation functions
simply transform a node’s input into a desired output
(Fig. 7C). Each node in an ANN contains an activa-
tion function (not just the output layer; Fig. 7B). These
activation functions, although not always linear, do not
have to be complex. For instance, the rectified linear
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Figure 6. Structure of a decision tree. Splitting of the dataset begins at the root node. Each split connects to either another decision node,
which results in further splitting of the data, or a terminal node that predicts the class of the data.

Figure 7. Components of a neural network. (A) The basis of an artificial neural network, the perceptron. This algorithm uses the sigmoid
function to scale and transform multiple inputs into a single output ranging from 0 to 1. (B) An artificial neural network connects multiple
perceptron units, so that the output of one unit is used as input to another. Additionally, these units are not limited to using the sigmoid
activation function. (C) Examples of four different activation functions: sigmoid, hyperbolic tangent, identity, and rectified linear unit. The
sigmoid scales inputs between 0 and 1 using an S-shaped curved. Similarly, the hyperbolic tangent function uses an S-shaped curve, but
scales inputs between -1 and 1. The identity function can multiply its input by any number to produce a linear output. The rectified linear
unit is similar to the identity function, however all inputs < 0 are given an output value of 0. There are other activation functions outside of
these, but these are arguably.
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Figure 8. Example of a digital image convolved with a filter. The image (left) is transformed into the feature map (right) via a convolutional
filter (center). The convolutional filter is designed to locate diagonal lines running from top left to bottom right of the image. The filter passes
over the image in a specified manner and each element in the image (red) is multiplied by the corresponding element in the convolutional
filter (blue). The summation of these elements (orange) is output into a newmatrix that reports the presence of a diagonal line. The feature
map indicates 2 when the specified diagonal line is found, 1 if a portion of it is found, and 0 if none of it is found.

unit applies a linear transformation to inputs ≥ 0, and
sets inputs < 0 to 0.25 It follows that as inputs proceed
through an ANN, they are progressively modified at
each layer so that at the final layer they no longer resem-
ble their original state. However, this final representa-
tion of the input is, in theory, more predictive of the
specified outcome.

Convolutional Neural Networks
For image recognition tasks, each input into a

feedforward ANN corresponds to a pixel in the image.
However, this is not ideal because there are no connec-
tions between nodes in a layer. In practice, this means
that the spatial context of features in the image are
lost.24,26,27 In other words, pixels that are close to one
another in an image are likely more correlated than
pixels on opposite sides of the image, but a feedforward
ANN does not take this into account.

A convolutional neural network (CNN) is a special
case of the ANN that overcomes this issue by preserv-
ing the spatial relationship between pixels in an
image.24,26,27 Rather than using single pixels as input,
a CNN feeds patches of an image to specific nodes in
the next layer of nodes (rather than all nodes), thereby
preserving the spatial context from which a feature
was extracted.9,24,26,27 These patches of nodes learn
to extract specific features and are known as convolu-
tional filters.

Convolutions are widely used in the realm of image
processing, and are often used to blur or sharpen
images, or for other tasks such as edge detection.28 A
visible-light digital image is simply a single matrix if
the image is grayscale or three stacked matrices if the

image is color (red, green, and blue color channels).28
These matrices contain values, typically between 0 and
255, that represent pixels in the image and the inten-
sity of each color channel at each pixel.28 A convolu-
tional filter is a much smaller matrix that is typically
square and range in size from 2 × 2 to 9 × 9.28
This filter is passed over the original image and, at
each position, element-wise matrix multiplication is
performed (Fig. 8).28 The output of this convolution is
mapped to a new matrix (a feature map) that contains
values corresponding to whether or not the convolu-
tional filter detected a feature of interest.24,26–29

In CNNs, filters are trained to extract specific
features from images (e.g., vertical lines, U-shaped
objects,) and mark their location on the feature
map.26,27 A deep CNN then uses the feature map as
input for the next layer, which uses new filters to create
another new feature map.24,26,27 This can continue
for many layers and, as it continues, the extracted
features become abstract, but highly useful for predic-
tion. The final features maps are then compressed from
their square representations and input to a feedforward
ANN, where classification of the image based on the
extracted features and textures can occur.24,26,27 This
process is referred to as DL.24

Aside from image classification tasks,DLhas shown
promise for image segmentation tasks.1,30,31 Rather
than classifying images as a whole, this method aims
to identify objects within an image. To accomplish this
task, DL classifies individual pixels given surrounding
pixel information. For example, in diabetic retinopa-
thy, a segmentation algorithm might segment (outline)
the retinal vasculature by assigning probabilities to
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individual pixels as belonging to a retinal blood vessel
or not belonging to a retinal blood vessel. A similar
method for breast cancer detection could mark pixels
as belonging to a mass or not belonging to a mass, and
the output image could be provided to a radiologist for
further review.

Deep Learning in Ophthalmology
The popularity for DL has especially risen in the

field of ophthalmology for image-based diagnostic
systems. On the simpler end of visual interpreta-
tion tasks, Coyner et al. devised a DL system for
automated assessment of retinal fundus image quality
with an output of “acceptable” or “not acceptable”
based on multiple graded expert labels.3 Presum-
ably, the network learned that the retinal vascula-
ture must be easily distinguishable for an image to be
deemed acceptable. In a more complex task, Gulshan
et al. demonstrated that DL could classify diabetic
retinopathy, in agreement with the Early Treatment for
Diabetic Retinopathy Study scale, using only retinal
fundus images as input and the consensus diagnoses of
multiple clinicians as the “class labels.”2 The presence
of features such as microaneurysms, intraretinal
hemorrhages, or neovascularization were not supplied
to the DL method as signs of diabetic retinopathy.
Rather, the DL model either learned these features
or learned novel features that aid in the diagnosis of
diabetic retinopathy. Further, Brown et al. trained a
similar DL network for the diagnosis of plus disease
in retinopathy of prematurity. First, an algorithm
was trained to segment retinal vasculature into binary
vessel maps. Then another DL algorithm was trained
to examine the vessel maps and conclude whether
the vasculature appeared normal or abnormal.1 This
network, too, performs on par or better than most
experts in the field. One of the most impressive
examples of DL in ophthalmology was conducted by
De Fauw et al. Using three-dimensional optical coher-
ence tomography images, a DL framework was trained
to not only detect a single disease, but more than 50
common retinal diseases.6

Challenges with DL Models
In recent years, DL has become a hot topic within

the field of medicine given the digital availability of
information; however, many challenges still exist. DL
is limited by the quantity and quality of data used to
train the model. It is difficult to estimate how much
data are necessary to sufficiently and reliably train DL
systems because it depends both on the quality of the
input training data aswell as the complexity of the task.
Typically, thousands of training examples are required
to create a model that is both accurate and general-

izable. Thus, developing models for identification of
rare diseases, where large datasets may not be readily
available, is especially challenging. On the other hand,
although one might assume that more data will always
lead to better models, if the quality of the training
data is imprecise, mislabeled, or somehow systemati-
cally different than the test population, training on very
large datasets may result in models that do not perform
well in real-world scenarios. Furthermore, there is an
implicit assumption that datasets are accurately labeled
by human graders. Unfortunately, this is often not the
case, and noisy and/or missing labels are often a bane
for data scientists.

DL methods also suffer from the “black box”
problem: input is supplied to the algorithm and an
output emerges, but it is not exactly clear what features
were identified or how they informed the model
output.29,32,33 In contrast, simple linear algorithms,
although not always as powerful as DL, are easily
interpretable. The computed weights for each feature
are supplied upon completion of the training process,
which allow for one to interrogate exactly how the
model works and possibly discover important predic-
tors thatmay be useful for prevention of a disease.With
deep learning, a complex series of matrix multiplica-
tion and abstract filters makes interpretability signif-
icantly more challenging.29,32,33 Activation maps, or
heatmaps, are methods that attempt to address the
“black box” issue by highlighting areas of images that
highlight regions of an image that “fire together” with
the output classification label.29,32,33 Unfortunately,
these methods still require human interpretation, as
they are often not examined critically (examples are
cherry picked for publication, highly subject to confir-
mation bias, etc.), and thus this remains an active area
of research. For instance, if a DL model classifies a
fundus image as having proliferative diabetic retinopa-
thy, a heatmap will highlight feature areas on that
fundus image that contributed to the decision of being
classified as having proliferative diabetic retinopathy.
It is up to the physician to interpret whether these
DL model identified features are the same features the
physician would use to diagnose the disease, and the
implications of such findings.

Conclusion

AI methods have shown to be a promising tool in
the field of medicine. Recent work has demonstrated
that these methods can develop effective diagnostic
and predictive tools to identify various diseases. In
the future, AI-based programs may become an integral
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part of patients’ clinic visits with their ability to assist in
diagnosis and management of various diseases. Physi-
cians should take an active approach to understand the
theories behind AI and its utility in medicine with the
goal of providing optimal patient care.
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